RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION(Batch 2019-22), March 2021 SECOND YEAR

Date: 12/03/2021MATHEMATICS HONOURSTime: 11 am - 1 pmPaper : MACT 5[CC5]

Full Marks : 50

Instructions to the students

- Write your College Roll No, Year, Subject & Paper Number on the top of the Answer Script.
- Write your Name, College Roll No, Year, Subject & Paper Number on the text box of your e-mail.
- Read the instructions given at the beginning of each paper/group/unit carefully.
- Only handwritten (by blue/black pen) answer-scripts will be permitted.
- Try to answer all the questions of a single group/unit at the same place.
- All the pages of your answer script must be numbered serially by hand.
- In the last page of your answer-script, please mention the total number of pages written so that we can verify it with that of the scanned copy of the script sent by you.
- For an easy scanning of the answer script and also for getting better image, students are advised to write the answers on single side and they must give a minimum 1 inch margin at the left side of each paper.
- After the completion of the exam, scan the entire answer script by using Clear Scan: Indy Mobile App or any other Scanner device and make a single PDF file(Named as your College Roll No) and send it to

Group - A

Answer any 4 questions from question numbers 1 to 6.

- 1. Let V be the vector space of all polynomial functions p from \mathbb{R} into \mathbb{R} which have degree 2 or less: $p(x) = c_0 + c_1 x + c_2 x^2$. Define three linear functionals on V by $f_1(p) = \int_0^1 p(x) dx$, $f_2(p) = \int_0^2 p(x) dx$ and $f_3(p) = \int_0^{-1} p(x) dx$. Show that $\{f_1, f_2, f_3\}$ is a basis for V* by exhibiting the basis for V of which it is the dual. [5]
- 2. Let W be a finite dimensional subspace of an inner product space V, and let E be the orthogonal projection of V on W. Prove that $(E\alpha|\beta) = (\alpha|E\beta)$ for all $\alpha, \beta \in V$. [5]
- 3. Let V be the subspace of $\mathbb{R}[x]$ of polynomials of degree at most 3. Equip V with the inner product $(f|g) = \int_{0}^{1} f(t)g(t)dt$. Apply the Gram-Schmidt process to the basis $\{1, x, x^2, x^3\}$. [5]

ver any 1 questions from question numbers 1 to 6

[20 marks]

- 4. For the vector space \mathbb{R}^3 and basis $\beta = \{(1, 0, 1), (1, 2, 1), (0, 0, 1)\}$, find the dual basis β^* for V^* . [5]
- 5. Let V be a complex vector space with an inner product (|). Prove that $(\alpha|\beta) = \frac{1}{4} \sum_{n=1}^{4} i^n ||\alpha + i^n \beta||^2$ for $\alpha, \beta \in V$. [5]
- 6. Describe explicitly all inner products of \mathbb{R}^2 .

Group - B

[5]

[2]

[3]

Answer all the questions. Maximum you can score is 30.

- 7. Let H be a subgroup of a group G. Define $K = \bigcap_{g \in G} g^{-1} Hg$. Prove that K is normal in G. Also prove that if L is a normal subgroup of G and $L \subseteq H$ then $L \subseteq K$. [2+2]
- 8. Let G be group of order 8 and let x be an element of G of order 4. Prove that $x^2 \in Z(G)$. [4]
- 9. Show that $\frac{(\mathbb{C},+)}{(\mathbb{R},+)} \cong (\mathbb{R},+).$ [3]
- 10. Let R be a ring with 1 and $a \in R$. If \exists a unique $b \in R$ such that ab = 1, prove that ba = 1.
- 11. Prove that $(\mathcal{P}(\mathbb{N}), \Delta, \bigcap)$ is a commutative ring with identity. Does the ring contain divisor of zero? What is the characteristic of the ring? (Here $\mathcal{P}(\mathbb{N})$ denotes the power set of \mathbb{N}). [3+1+1]
- 12. Find all units of $(\mathbb{Z}_8, +, \cdot)$. Prove that the units of \mathbb{Z}_8 form a noncyclic group with respect to multiplication. [4]
- 13. Show that the rings $(2\mathbb{Z}, +, \cdot)$ and $(3\mathbb{Z}, +, \cdot)$ are not isomorphic. [3]
- 14. Find all units of the ring $\mathbb{Z}[i\sqrt{5}]$. [3]
- 15. Show that 2 i is irreducible in $\mathbb{Z}[i]$.
- 16. Let $\mathbb{Q}_3 = \{r \in \mathbb{Q} : r = \frac{a}{b} \text{ and } \gcd(a, b) = 1 \Rightarrow 3 \text{ does not divide } b\}$. Show that \mathbb{Q}_3 is a ring with identity with usual addition and multiplication. Show also that all nonunits in \mathbb{Q}_3 form a maximal ideal of \mathbb{Q}_3 . [3+2]